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Abstract 

The crystal structures of Rb2ZnBr 4 at 293, 140 and 
95 K have been studied using single-crystal X-ray 
diffraction or single-crystal neutron diffraction (for the 
structure at 95 K). The so-called incommensurate 
structure (293K) and the two threefold super- 
structures (140 and 95 K) have been determined using a 
computer program for modulated structures. The 
resulting 293 K structure has space group Pcmn- 
(00 y) (ssl). Because of conflicting symmetry evidence in 
the literature, several other space groups were tried, but 
they yielded less satisfactory results. For the other two 
phases, the space group Pc2~n was used. The R values 
are 0.08 (for 1512 main and 2654 satellite reflections), 
0.12 (1494 + 3002 reflections) and 0.05 (for 502 + 
980 reflections) for the structures at 293, 140 and 95 K 
respectively. There is no clear structural difference 
between the two threefold superstructure phases. The 
displacive modulation is strikingly similar in the three 
structures. It mainly consists of rotations of the rather 
rigid ZnBr 4 tetrahedra. The amplitude of the 
modulation functions is roughly 35% smaller in the 
293 K structure than in the 95 K structure. The 
modulation functions of the two threefold super- 
structures show a strong pseudo-Pcmn(OOy)(ssi) sym- 
metry. The temperature parameters clearly reveal that 
librations of the tetrahedra form an important com- 
ponent of the thermal vibrations. Crystal data at 
95 (1)K: M r =  555.9, a =  13.184 (4), b =  7.599 (2), 
c = 9.623 (5) A, V = 964.1 A 3. 

1. Introduction 

In Rb2ZnBr 4 five phase transformations are observed at 
atmospheric pressure, at temperatures T~= 374, T c 
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= 190, T3= 112, T4=77 and T s = 5 0 K  lsee, for 
example, Yamaguchi, Sawada, Takashige & Nakamura 
(1982) and Nomoto, Atake, Chaudhuri & Chihara 
(1983)]. The values found in the literature for these 
temperatures scatter around the above-mentioned 
values. Rb2ZnBr 4 melts at 753 K (Sawada, Shiroishi, 
Yamamoto, Takashige & Matsuo, 1977). The six solid 
phases are denoted as N (normal), 1 (incommensurate), 
F (ferroelectric), IV, V and VI from high to low 
temperatures. T~ has a hysteresis of about 10 K. This 
value strongly depends on the sample: de Pater (1978) 
observed that part of a crystal remained in phase 1 even 
at 4 K, and de Boer (1984) observed that a crystal 
remained in phase I at temperatures below 100 K. No 
hysteresis has been observed for the other phase 
transitions. 

In phase N (above T~) Rb2ZnBr 4 has the ,8- 
K2SOa-type structure with unit-cell dimensions a =  
13.386(3), b = 7 . 6 7 9 ( 2 )  and c = 9 . 7 5 3 ( 2 )  A at 
373 K (de Pater, 1979). In phase I (between T/and T~) 
the crystal structure is modulated by a displacive 
modulation wave with the modulation wave vector 
parallel to e*: q = ye*. The value of y is constant at 
5/17 (0.294) within experimental error in the large 
temperature interval between T~ and T~ + 10 K [see de 
Pater (1979) and Iizumi & Gesi (1983)]. Thus, in this 
range the structure of the so-called incommensurate 
phase is commensurate (Hogervorst & de Wolff, 1982). 

Below the 'lock-in' phase-transition temperature T~ 
the value of ? is 1/3, and hence phase F has a threefold 
superstructure. It is not yet clear what happens between 
T~ + 10 K and T c. Until recently it has been assumed 
that on lowering the temperature from T~ + 10 K, y 
increases monotonically from 0.294 to about 0.31 at T~, 
where it jumps to 1/3. Recent measurements of Iizumi 
& Gesi (1983), however, indicate a more complex 
behaviour. These measurements suggest that several 
extra phase transitions exist in that small temperature 
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region, y jumping at each transition temperature to a 
new value. 

The symmetry of the threefold superstructure in 
phase F (between T~ and T3) is Pc2~n according to de 
Pater (1979) and Ueda, Ikeda & Terauchi (1982). Little 
is known about the structure of phases IV, V and VI. 
According to Ueda et al. (1982) these structures have 
the same threefold unit cell as phase F. They observed 
that phase IV shows the same systematically absent 
X-ray reflections as phase F, corresponding to a c glide 
normal to a and an n glide normal to e. In phases V and 
VI they only observed the n-glide plane. Yamaguchi et 
al. (1982) observed that 
which appears on cooling 
the Curie temperature), is 
this temperature. In phase 

the ferroelectricity along b, 
at T~ (therefore often called 
present in all phases below 

IV alone, they also observed 
a double D - E  hysteresis loop along the a axis. This 
indicates that this phase is antiferroelectric along a. 

Magnetic resonance measurements on Rb2ZnBr 4 
(Belobrova, Aleksandrova & Moskalev, 1981) show 
three S~Br NQR frequencies in phase N, 12 in phase F 
and 32 in phase IV. In phase N the intensity of one of 
the three frequencies is twice as large as that of the 
other two. For phase N and phase F these results 
correspond to the symmetry information mentioned 
above. The number of lines in phase IV, however, does 
not correspond to a threefold superstructure with 
symmetry Pc2~/n. The frequency peaks of phase IV do 
not have a normal shape and Belobrova et al. suggest 
that either several of the observed peaks are close 
doublets or the structure is incommensurate. 

De Pater (1979) determined the structure of Rb 2- 
ZnBr 4 in phase N at 373 K from a neutron diffraction 
powder diagram. He used the same technique to 
determine the average structure at 300 K (phase/)  and 
at 4 K (phase VI). In all cases he fitted the measure- 
ments to a structure model with the unit-cell size 
and symmetry of phase N. He used split atoms to 
account for the thermal motion at 373 K and for the 
modulation displacements in the other cases. 

De Jager (1980) determined the structure of Rb2Zn- 
Br 4 at 300 K in a threefold superstructure approxi- 
mation, using 730 X-ray reflections, of which 78 are 
satellites. His structure model has the same unit-cell size 
and symmetry as the structure of phase F" a threefold 
supercell and space group Pc2 ~n. 

Several other compounds exist the crystals of which 
have the phase sequence normal - incommensurate - 
threefold superstructure. The phase-transition tem- 
peratures T i and T~ are 553 and 403 K for K2ZnCI 4 
(Gesi & Iizumi, 1979), 303 and 194 K for RbEZnCl 4 
(Quilichini & Pannetier, 1983), and 129 and 94 K for 
KESeO 4 (lizumi, Axe, Shirane & Shimaoka, 1977). In 
addition, many other A2BX 4 compounds show incom- 
mensurately and commensurately modulated structures 
related to the modulated structure of Rb2ZnBr 4 
(Hogervorst, 1986). 

In this paper structure determinations of Rb2ZnBr 4 
at 293, 140 and 95K are presented. At these 
temperatures Rb2ZnBr 4 is in phase /, phase F and 
phase IV respectively. 

2. Expedmental 

Transparent single crystals of Rb2ZnBr 4 were grown 
from an aqueous solution containing RbBr and ZnBr 2 
in the molar ratio 2 :l (RbBr :99.9%, Alpha Products; 
ZnBr2: 99.8%, Ventron GmbH). At room temperature, 
another compound (unidentified) crystallizes first from 
the fresh solution. The molar ratio of the two 
components in the solution then changes. Finally, clear 
Rb2ZnBr4 crystals appear. 

Attempts to make small spheres (diameter <0.3 mm) 
of Rb2ZnBr 4 failed. Therefore, the X-ray measurements 
were performed on small ellipsoid-shaped crystals. 
Because of the strong absorption of X-rays in Rb2Zn- 
Br 4 (the linear absorption coefficient of Mo K~t radia- 
tion in Rb2ZnBr 4 is 28.2 mm-~), special care was 
necessary for the absorption correction (for details 
see §4). 

Experimental details of the diffraction measurements 
at the three temperatures are given in Table 1. The 
X-ray measurements were performed with an Enraf- 
Nonius CAD-4 four-circle diffractometer. During the 
measurements at 140 K the crystal was cooled by a 
controlled flow of N 2 gas. The neutron diffraction 
measurements were carried out with the four-circle 
diffractometer at the HFR reactor in Petten. The 
crystal was mounted in an He-flow cryostat (Herbert & 
Campbell, 1977). 

At the three temperatures the main reflections and 
the first-order satellites were measured in one octant. 
No higher-order satellites were measured because they 
are not visible on precession photographs. Each 
reflection was measured until the desired accuracy 
[o(/) <0.021] or the maximum measuring time was 
reached. In the neutron diffraction measurements the 
measurement of a reflection was stopped after 900 s if 
the intensity was very low [I < o(/)]. For negative 
measured intensities 1 was set to zero. All these weak 
reflections, however, are included in the data set. 
Lorentz-polarization corrections of the X-ray measure- 
ments were applied according to Azaroff (1955). No 
extinction correction was used. 

During the refinements of the structures at room 
temperature and 140 K, a few reflections were removed 
from the data set (see Table 1). Those reflections 
suspected of extinction have small 0, a very high 
intensity and a calculated structure factor which is 
much higher than the observed one. Those reflections 
with 2/2 contamination have a low intensity, a 
calculated structure factor which is much lower than 
the observed one and a very strong reflection at the 
position with double indices. It has been checked that 
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Table 1. Data on the structure determinations of 
Rb2ZnBr 4 

Temperature (K) 293 (2) 140 (3) 95 (1) 
Stability (K) +5 _+3 _+0.2 
Radiation Mo Kct, 0.7107 A Mo Ka, 0.7107/~, Neutrons, 1.304 A 
Monochromator Graphite Graphite Double Cu(220) 
Crystal shape Ellipsoid Ellipsoid Rough sphere 
Diameter (mm) 0.21-0.27 0-23-0.28 3.5 
Max. measurement 

time (s) 600 180 1800 
No. of reflections 

used for cell constants "1" 25 13 
8 range for cell 

constants (o) -]- 12-14 20-63 
Max. 8 (o) 30 30 38.3 
hkl range h 0-18 0-18 0-12 

k 0-10 0-10 0-7 
/ 0-13 0-13 0-9 

Space group Pcmn (00y)(ssl) Pc2~n Pc2~n 
a(A) 13.330(3)% 13.198(5)$ 13.184(4) 
b (A) 7.656 (2)'1" 7.594 (4)* 7.599 (2) 
c (A) 9.707 (2 )% 3x9.614 (3)~: 3x9.623 (5) 
y(q = ye*) 0-293§ ] 
No. of reflections 

Main 1512 1494 502 
Satellite 2654 3002 980 
Total 4166 4496 1482 

Reflections removed 
Extinction 0200, 0400, 1030 - -  

1030, 4000 
2/2 contamination 2000, 1100 2000, 1100 - -  

Weighting scheme I/o'(F o) I/[o'-(Fo)+(O.O5F,)'-I I/o'-(F,) 
No. of parameters 

Basic structure 
position 13 20 20 

Modulation Fourier 
coefficient 16 42 42 

Temperature 26 42 42 
Scale factor 1 1 1 
Total 56 105 105 

Largest shift in last 
refinement cycle 0-0120 0.170 0.21 o 

wR (all reflections) 0.080 0.119 0-050 
wR (main reflections) 0.063 0.088 0.040 
wR (satellite reflections) 0.167 0.154 0.073 
D (A)q 0.037 0.047 0.025 

t Cell constants  taken from de Pater (1979). 
These lattice parameters have larger errors than the 

because of the strong absorption. 
§ Taken from Iizumi & Gesi (1983). 
q D is defined in equation (3). 

e.s.d.'s indicate, 

the 2/2 contamination is indeed of the proper mag- 
nitude to explain these discrepancies.* 

The atomic scattering factors and the dispersion 
corrections of Rb +, Zn 2+ and Br- for Mo Ks radiation 
were taken from International Tables for X-ray 
Crystallography (1974). The neutron diffraction scat- 
tering amplitudes of Rb, Zn and Br, 7.08, 5.680 and 
6.79 fm respectively, were taken from Koester & Yelon 
(1982). 

3. Symmetry 

A full treatment of the symmetry of incommensurately 
modulated crystal structures has been given by de 
Wolff, Janssen & Janner (1981). For typographical 

* Lists of observed and calculated structure factors at 293, 140 
and 95 K have been deposited with the British Library Document 
Supply Centre as Supplementary Publication No. SUP 44555 (45 
pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. 

Table 2. Reflection conditions observed at 293 K 

(i) Oklm: l+m = even - ,  c(s) 
(ii) hOlm: m = e v e n - ,  re(s) 
(iii) hk00: h+k = even ~ n ( i )  

reasons the notation of the four-dimensional space 
groups used in this paper differs from that of de Wolff 
et al. In our notation, for example, the space-group 
symbol 

Pcmn(OOy)(ssi) (1) 

gives the (standard) three-dimensional space group of 
the basic structure (Pcmn), the direction and length of 
the modulation wavevector (Oa* + Ob* + ),e*) and the 
way the symmetry operations act on the modulation 
functions (s: shift of half the modulation wave length; i :  
inversion) respectively. The individual symmetry 
operations are denoted as c(s), re(s), n(i), etc. 

Although the room-temperature phase of Rb2ZnBr 4 
is a commensurate superstructure [y=5/17 ,  of. 
Hogervorst & de Wolff (1982)], it shows systematic 
extinctions which strongly suggest a (3 + 1)- 
dimensional space group as the best description of its 
symmetry. The reflection conditions which we ob- 
served on X-ray precession photographs are shown in 
Table 2. In our diffractometer results, these rules are 
obeyed as well. Since the three symmetry operations 
listed in Table 2 generate the complete group Pcmn- 
(OOy)(ssl-), it can be expected that this symmetry will 
lead to a satisfactory description of the structure. It has 
indeed turned out to be the best basis for refinement. 

The true symmetry of the superstructure has not 
been solved, in spite of considerable effort. For 
y =  5/17, only the elements c(s) and n(i) in the above 
symbol correspond to three-dimensional elements, viz. 
c and n, in the required unit cell with Cs= 17c. The 
element re(s) is lost. This can be seen, for example, from 
the reflection condition (ii) which for the multiple cell 
(L = 17l+ 5m) does not lead to a parity condition on 
L in hOL. Accordingly, the true space group would 
become Pc2~n in the multiple cell. This is in flagrant 
contradiction with two observations: 

(a) Crystals grown from aqueous solution at about 
300 K have a very pronounced 222 symmetry (de 
Pater, 1978; de Wolff, 1980). The same point group 
was also seen in experiments by Dam & Janner (1983). 
With a true symmetry Pc21n, the point group would be 
rn2m, and m2m is not even a subgroup of 222. 

(b) Neutron diffraction experiments of Iizumi & Gesi 
(1983) show that reflections 0210, 0201 and 0221 have 
intensities differing significantly from zero at 298 K. 
These reflections are not allowed by condition (i) (see 
Table 2), so they exclude the presence of a c-glide plane 
in the actual superstructure. It should be remarked, 
however, that their intensities are very small indeed. 
Therefore, it must be concluded that the structure 
almost has symmetry Pcmn(OOy)(ssi). [The choice of a 
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and b axes was not stated by Iizumi & Gesi. Judging 
from other reflection intensities we concluded that their 
a (b) is our b (a), so in the indices mentioned above h 
and k have been interchanged with respect to those 
given in their paper.] The two observations together 
suggest that the actual space group is P212~21(007)- 
( i i l ) .  

Certain physical properties have been checked by 
other authors, mainly with a view to test a possible 
departure from centrosymmetry. All results, however, 
have been negative, so that no definite conclusion can 
be drawn: 

(a) Smid (1984): no optical second harmonic 
generation (detection limit: 10 -4 times the second 
harmonic generation level of quartz); 

(b) Yamaguchi et al. (1982): no ferroelectricity or 
pyroelectricity. 

A definite identification of the space group of 
Rb2ZnBr 4 in the room-temperature phase cannot be 
made. Structure refinements have been performed in 
three space groups (§4). Pcmn(OOy)(ssi) gives the best 
results. Hence, the room-temperature structure of 
Rb2ZnBr 4 can at least to a good approximation be 
described by this space group. 

The room-temperature structure will be treated as 
incommensurate in the structure refinements, not- 
withstanding its rational modulation wavevector. Table 
3 gives the symmetry operations of space group 
Pcmn(OOy)(ssi). The atoms on the mirror plane [m(s)] 
are at special positions. The modulation functions dl(t) 
and d3(t) of such atoms, describing the displacement 
components in the a and c directions (see §5), cannot 
contain odd harmonics. The modulation functions d2(t) 
of these atoms cannot contain even harmonics. These 
symmetry restrictions exist together with the usual ones 
on the basic structure positions and the temperature 
parameters. 

No inconsistencies exist concerning the space group 
of phase F: Pc2~n. Rb2ZnBr 4 is ferroelectric along b in 
this phase (Yamaguchi et al., 1982) and generates 
second harmonic light at a level of about 0.1 times that 
of quartz (Smid, 1984). The systematic absences for the 
c- and n-glide planes are clearly present (Ueda et al., 
1982). A few apparent violations of these systematic 
absences in our measurements were shown to be caused 
by 2/2 contamination. 

The space group of phase IV is still a puzzle. Despite 
the fact that the observations of Yamaguchi et al. 
(1982) and Belobrova et al. (1981) indicate that the 
structure of this phase is different from that of phase F, 
we could not find differences in the diffraction sym- 
metry: the systematic absences of the c- and n-glide 
planes are still present [as has also been found by Ueda 
et al. (1982)]: no extra reflections could be found on the 
a*, b* or c* axes; no tripling of a or b could be found; it 
has been checked that the modulation wavevector is 
c*/3, and not, for example 3c*/8, as suggested by the 

Table 3. Space-group operations o f  Pcmn(OOT)(ssi) 

R, s, e and r are given for each operation. 

I i ° i l  I ' ° i ]  c(s ) :  I , 0 , 1,½ 2~(1) :  0 - I  , , - l , ½  

0 ! 0 0 -  

[ i ° i l  [i] { i ° i ]  [i] re ( s ) :  . -  , , I ,  ½ 2 , ( i ) :  1 , , - 1, 
0 0 - 

{i°!]  [i] [-i ° i] [i] n ( i ) :  , ~ , - 1 , 0  2 , ( I ) :  - I  , ~ , 1 , 0  
O -  0 

[-i ° !] [iJ [ ' ° i ]  [!] / ( / ) :  . - 1  , , - 1 , 0  1 ( I ) :  0 , , I , O  

0 . -  0 0 

results of the magnetic resonance measurements of 
Belobrova et al. (1981). Moreover, as in phase F, in this 
phase Rb2ZnBr 4 is ferroelectric along b (Yamaguchi et 
al., 1982) and generates second harmonic light (Smid, 
1984). Therefore it is concluded that the structure of 
this phase can be described as a threefold super- 
structure with space group Pc2~n, like phase F. This 
symmetry has been used for the structure 
determination. 

4. Absorption correction and refinement 

The structures have been refined using the computer 
program described by Hogervorst (1986). In this 
program the crystal structure is explicitly described as 
an incommensurately or commensurately modulated 
structure, according to the formalism of de Wolff et al. 
(1981). To describe the atomic positions, average 
coordinates and Fourier coefficients of the modulation 
functions are used instead of individual coordinates. 
The threefold superstructures of Rb2ZnBr 4 at 140 and 
95 K could have been refined with a conventional 
program as well [see, for example, Vermin, Verschoor 
& IJdo (1976), or van Koningsveld (1983)], but using 
the program for modulated structures has certain 
advantages: 

(a) direct comparison of incommensurately and 
commensurately modulated structures is possible; 

(b) fewer temperature parameters are involved 
because the program automatically uses the same 
temperature parameters for all corresponding atoms in 
different subcells; 

(c) the correlations between the parameters in ihe 
model are smaller in general, which gives better 
convergence. 

In order to represent the threefold superstructures 
properly in the program, space group Pc2~n(OOy)(sii) 
has been used, with the symmetry operations given in 
Table 4. 

For the 293 K structure, only the first harmonics are 
considered in the refinements, because the second- and 
higher-order satellites are very much weaker than the 
first-order ones (they were not seen by X-ray diffrac- 
tion). For the two threefold superstructures, the second 
and higher harmonics do not exist. 



124 THREE MODULATED PHASES IN Rb2ZnBr 4 

Table 4. Four-dimensional symmetry operations used to 
describe a threefold superstructure with space group 

Pc2~n 

[i°!]  [1 [i°!] [i] C(S): , ~ ) ,  1,½ 2,(/): I , , - 1 , ~  
0 ½ 0 -  

[ i ° !] [ i ]  [ '  ° i] [ i ]  
n(1): 1 , ,~ , - 1 , - ~  1(1): 0 1 , , 1,0 

0 - -  0 0 

All the refinements were based on structure factors. 
The residual (wR) was calculated using 

wR = ~.rWr(For-- IFcrl )2/~.rWrFor2, (2) 

in which the summations are over all used reflections, 
w r is the weight of reflection r, Fcr is the calculated 
structure factor and For is the observed structure 
amplitude. 

The linear absorption coefficient (~) for MoKct 
radiation in RbzZnBr 4 is 28.2 mm -~, that for neutrons 
(2 = 1.304 A) is 0.0082 mm -1. For the neutron diffrac- 
tion data no absorption correction is needed, but for the 
X-ray measurements a large correction is necessary. 
Because the absorption is very strong and because the 
crystals used for these measurements are not spheres, 
the usual isotropic correction (International Tables for 
X-ray Crystallography, 1959) is not sufficient. 
Therefore, the reflection intensities have been corrected 
with the computer program CAMEL JOCKEY of 
Flack (1974, 1975). 

The absorption correction is derived by this program 
from a separate set of measurements, consisting of 17 
non-equivalent reflections and their symmetry equiv- 
alents, each measured for ~,=n x 20 ° ( n = - 4 ,  - 3 ,  
- 2 ,  - 1 ,  0, 1, 2, 3, 4; ~ is the rotation angle around the 
reflection vector), as far as the geometry of the 
diffractometer allowed. In total, 1227 of these meas- 
urements were performed at room temperature (some 
of them are double) and 1160 at 140 K. If the crystal 
had been a sphere, then for each of the 17 non- 
equivalent reflections all the measurements should have 
given the same intensity within experimental error. The 
program calculates the average for each of the 17 
groups of intensities, and calculates the correction 
necessary to make the eight measurements at ~ =  0 ° in 
each group equal to this average. This correction, which 
is a function of the diffractometer angles, is applied to 
the intensities in the main data set, together with the 
usual isotropic correction. 

Because the crystals are not spheres, the choice of 
the radius (R) for the isotropic part of the absorption 
correction is ambiguous, as pointed out by Flack 
(1974). For both crystals used for the X-ray measure- 
ments, pR = 3.5 was chosen. For the room-temperature 
measurements, /~R = 3.8 was also tried, in order to 
investigate the effect of a different choice of radius. 
Using 1678 reflections (those with h 2 + k 2 + F < 100), 
refinements resulted in wR=0.07713 and 0.07719 for 

Table 5. Comparison of refinements using reflections 
corrected for absorption with (A) and without (B) the 

anisotropic part 

N is the number  o f  reflections used, wR is the residual and D is the average of  
the differences between the maximum and minimum of the distance types 
Z n - B r ( / )  1 i=  1,2,3,4, see equation (3)]. Weighting scheme for refinements 
1-6:  w r = l/a2(Fo); for refinements 7,8: w, = 1/Io2(Fo) + (0.05Fo)21. 

Temp.  Reflections A B 
No. (K) used N wR D ( A )  wR D ( A )  
I 293 I> 10o(1) 528* 0.0640 0.051 0.0689 0.05 l 
2 293 h2+k'-+F<lO0 1678' 0.0771 0.038 0.0783 0.037 
3 293 All 4166 0.0804 0-037 - -  - -  
4 140 1> 10g(/) 890* 0.0657 0.067 0.0730 0.067 
5 140 All 4498* 0.0771 0.052 0.0796 0.057 
6 140 All 4496 0.0735 0.056 - -  - -  
7 140 All 4498* 0.1206 0.047 0.1242 0.045 
8 140 All 4496 0.1188 0-047 - -  - -  

* Including two reflections which are strongly contaminated by 2/2. 

#R = 3.5 and 3.8 respectively. In the case ofpR -- 3.8, 
the diagonal temperature parameters were about 0.002 
larger than in the case of/aR = 3.5, while the other 
parameters did not show noticeable differences. 
Therefore it can be concluded that the only effect of 
choosing a different radius is that the refinement leads 
to slightly different temperature parameters. For the 
crystal used for the room-temperature measurements, 
the program used four nonzero coefficients (including a 
scale factor) in the function that describes the trans- 
mission factor. The correction factors for the aniso- 
tropic part of the absorption correction applied to the 
intensities were between 0.77 and 1.18. For the studies 
at 140 K, nine nonzero coefficients were used, and the 
factors were between 0.72 and 1.35. 

The effect of the absorption correction can be 
evaluated by comparing the results of refinements using 
reflections which are corrected as described, with the 
results of refinements using the same reflections 
corrected only by the isotropic part of the absorption 
correction. These results are shown in Table 5. It can be 
concluded from the residuals in this table that the 
absorption correction according to Flack is significantly 
better than the mere isotropic correction. The correc- 
tion has a greater effect on the stronger reflections 
because the corrections are larger for stronger reflec- 
tions. Besides the residual, another quantity is used to 
obtain information about the quality of the model. This 
quantity (D) is calculated from the Z n - B r  distances 
within the rather rigid ZnBr 4 tetrahedra. The use of this 
quantity is based on the fact that all Z n - B r  distances of 
a certain type [e.g. Zn-Br(1)] will, to a good 
approximation, be equal. This is true because the 
tetrahedra in different subcells have about the same 
surroundings since the deviation of the structure from 
the symmetry of the normal phase (N) is small. D is 
defined by 

4 

D = ~ Z {[Zn-Br(i)lma~- [Zn-Br(i)]min}. (3) 
i= l  
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Table 6. A tom icfractional coordinates of the basic structure (× 10 4) and the Fourier coefficients of the modulation 
functions (x 104) 

Rb(1) 

Rb(2) 

Zn 

Br(I) 

Br(2) 

Br(3) 

Br(4) 

293 K 140 K 95 K 
Xoi 

3234 (1) 
2 2500 
3 5153 (1) 

5968 (1) 
2 2500 
3 8730(1) 

5777 (1) 
2 2500 
3 2746 (I) 

5831 (I) 
2 2500 
3 5184 (1) 

4126 (1) 
2 2500 
3 1802 (1) 

6593 (I) 
2 5012 (I) 
3 1839 (1) 

dlc dis Xoi die dis Xoi dlc dis 
0 0 3229 (1) 23 (3) - 24  (3) 3223 (1) 3 (5) - 15 (4) 

-11 (5) -147 (4) 2476 (8) 149 (3) 167 (3) 2489 (10) 174 (4) 204 (4) 
0 0 5127(1) 0(4) -14 (5 )  5120(2) 23(6) - 3 (6 )  
0 0 5970 (2) 20 (5) 53 (4) 5970 (2) 27 (6) 50 (6) 

I I0 (5) 91 (5) 2530 (9) -195 (4) - 34  (4) 2519 (12) -223 (5) -28  (5) 
0 0 8759 (2) 16 (5) - 28  (5) 8765 (2) 6 (7) -25  (6) 
0 0 5785 (1) - 6  (3) 10 (4) 5789 (1) - 7  (6) - 8  (6) 

- 30  (4) 93 (4) 2491 -17  (3) -137 (3) 2497 -16  (4) -132 (4) 
0 0 2766 (1) 1 (5) - I 1  (5) 2772 (2) 37 (7) - 18 (6) 
0 0 5803 (1) -27  (3) -46  (3) 5792 (I) -27  (5) -52  (5) 

- 60  (6) 349 (5) 2479 (8) -169 (5) -508 (4) 2497 (10) -172 (6) -560  (5) 
0 0 5224 (1) 40 (4) 7 (4) 5234 (2) 20 (5) - 16 (6) 
0 0 4146 (I) -1  (3) 13 (3) 4157 (I) - 3  (5) 6 (4) 

-516 (5) 59 (7) 2603 (8) 545 (5) -438 (5) 2619 (9) 593 (6) -490 (7) 
0 0 1756 (2) 4 (5) -23  (4) 1740 (2) - 2  (6) -33  (6} 

-252 (2) 1 (3) 6687 (2) 291 (3) -178 (3) 6704 (3) 316 (4) - 218 (4) 
183 (3) 62 (4) 4966 (6) -243 (5) 62 (4) 4941 (8) -243 (7) 107 (6) 

-118 (3) - 92  (3) 1910 (3) 240 (4) 58 (4) 1922 (3) 283 (4) 46 (4) 
6569 (2) -297 (3) 182 (3) 6580 (3) -315 (4) 200 (4) 
-47  (6) -278 (5) 85 (5) -64  (8) -276 (6) 105 (6) 
1858 (3) -184 (4) - 9  (3) 1888 (3) -203 (4) - 46  (4) 

The structures at 293 and 95 K do indeed have quite 
small values of D: 0.037 and 0.025/~ respectively. 
However, the resulting structure at 140 K [using the 
weighting scheme w r = 1/a2(Fo)] has a quite large value" 
D = 0.056 A. Assuming that the absorption correction 
at this temperature is slightly unsatisfactory, a weight- 
ing scheme w r = 1/[a2(Fo) + (0.05Fo) 2] was used. This 
weighting scheme gives a lower weight to stronger 
reflections. If something is wrong with the absorption 
correction, then those reflections will be more affected 
than weaker ones. The result is shown in Table 5: the 
value of D is smaller for the new weighting scheme. 
Therefore, the structure produced by this refinement is 
considered to be a better approximation to the real 
crystal structure of RbzZnBr 4 at 140 K. 

Many attempts were made to refine the room- 
temperature structure with space group Pc21n(OOy)- 
(siT), using 1678 reflections (h 2 + k 2 + l 2 < 100) or 
1359 reflections (the 557 main reflections with h2+ 
k 2 + l 2 < 100 and 802 satellites with h 2 + k 2 + 12 < 80). 

These refinements did not include more reflections as 
that would not have changed the results significantly 
(compare D of refinements 2 and 3 in Table 5), and it 
would have required much more computation time. The 
number of parameters in these refinements was 100:20 
position parameters, 42 modulation parameters, 37 
temperature parameters (isotropic temperature factor 
for Zn) and one scale factor. Several sets of starting 
parameters were tried, and several refinement strategies 
were used. Soft constraints on the Z n - B r  distances 
[imposed by a penalty function (Yamamoto, 1983)] in 
the first stage of refinements were also used. The 
residuals resulting from these refinements were all about 
0.063. According to Hamilton (1965) these values are 
significantly lower than the value of 0.0771 for space 
group Pcmn(OOy)(ssi), but the corresponding structures 
have values of D above 0.09 A (mostly about 0.12 A). 
Moreover, parameters which are restrained because of 

symmetry in space group Pcmn(OOy)(ssi) but un- 
restrained in Pc2~n(OOy)(sl-f), converge to strongly 
varying values in the different refinement trials: the Xo2 
parameters of the atoms on the pseudo-m(s) plane vary 
more than 0.01 and the modulation parameters more 
than 0.005. If the structure really had space group 
Pc2~n(OOT)(siT), with such values for those parameters, 
it could be expected that most of the refinement trials 
would converge to those values. The variations could be 
caused by systematic errors in the observed structure 
factors remaining after absorption correction. The 
refined parameters will adapt to these errors, thus 
lowering wR and giving values deviating strongly from 
Pcmn(OOy)(ssi) symmetry, because of the very strong 
correlations between these parameters in the least- 
squares procedure. This is also observed during 
refinements in space group P2~2~2~(00v)(ill). Because 
the initial stages of the refinements in this space group 
resulted in a much smaller reduction of wR than in 
space group Pc2~n(OOy)(siT), this space group was not 
investigated further. 

Therefore, the room temperature structure of Rb2- 
ZnBr 4 is believed to be approximated best by the 
structure resulting from the refinement in space group 
ecmn(OOy)(ssi). 

5. R e s u l t s  

The fractional coordinates of the basic structure and the 
Fourier coefficients of the modulation functions are 
given in Table 6 for the three structures. The actual 
position x of an atom in a given subcell of the 
modulated structure (incommensurate or commen- 
surate) can be represented by 

x---- n + x o + d [ ( n  + Xo).q], (4)  

in which n is the position of the subcell, x 0 is the basic 
structure position of the atom, q is the modulation 
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U! i 
~3 

Rb(1) 354 (6) 
0 

Rb(2) 1170 (14) 
0 

Zn 296 (7) 
0 

Br(l) 602 (9) 
0 

Br(2) 338 (7) 
0 

Br(3) 982 (11) 
-46  (6) 

Br(4) 

Table 7. A nisotropie temperature parameters (A 2 x 104) 

The parameters correspond to temperature factor exp(-27r2~ikUtghih~*a*). 

293 K 140 K 95 K 

U22 U33 UII U22 U33 UII U22 U33 
U13 Ut2 U23 Ut3 Ul2 U23 Ut3 U~2 

593 (9) 367 (6) 254 (6) 369 (8) 172 (6) 118 (9) 232 (11) 120 (9) 
29(5) 0 -22(18)  9(5) -1 (13)  22(29) 2(8) -22(21)  

696(11) 369(8) 654(12) 450(11) 176(7) 444(13) 396(13) 112(10) 
-55  (8) 0 - 8  (19) - 6  (7) 90 (2 I) 60 (28) 0 (9) - 8  (32~ 
279 (7) 292 (7) 217 (6) 210 (7) 140 (6) 90 (I 1) 104 (11) 60 (I0) 
- 4  (5) 0 4 (18) 0 (5) - 2  (16) 23 (27) 1 (9) -27  (33) 

1152 (18) 240 (6) 376 (8) 540 (13) 119 (6) 178 (12) 345 (17) 65 (9) 
- 74  (6) 0 -23  (15) -36  (6) -81 (16) 0 (24) -23  (9) -79  (25) 
1165(22) 414(8) 258(7) 581 (12) 200(7) 137(10) 441 (17) 126(11) 

-121(6)  0 -10(17)  -54(6)  53(15) 30(23) -60(9)  69(24) 
378(7) 631(8) 604(16) 237(13) 291(13) 340(18) 146(21) 164(17) 
250(9) -316(8)  -25(12)  133(13) -165(12) -37(17)  78(17) -126(18)  

549 (15) 266 (14) 306 (14) 382 (19) 73 (20) 195 (19) 
10(12) 71(13) 90(12) -8 (19)  118(17) 54 (17~ 

wavevector and d(t) is the displacement vector function, 
defined by its components di(t), which are the 
modulation functions. 

l~or the three structures described in this paper, the 
modulation functions are given by 

di(t) = diccos2rct + dissin27rt. (5) 

In Table 7 the anisotropic temperature parameters are 
given for the three structures. The parameters in Tables 
6 and 7 are the direct results of the refinements. 

The modulation functions can also be written as 

di(t) = A icos2n(t - (0i), (6) 

with A; and (0 i being respectively their amplitude and 
phase. The values of A t and tp~ of the three structures 
are given in Table 8. To the phases at room temperature 
we added 5/12 in order to make them comparable with 
the phases of the other structures. 

Table 9 lists the equivalent isotropic temperature 
parameters, and Table 10 gives the distances in the 
ZnBr 4 tetrahedra. These distances are not corrected for 
thermal motion. 

The residuals for the three structures are listed in 
Table 1. The residuals for the main reflections alone and 
the satellites alone are also given. The residuals for the 
satellites are larger than those for the main reflections 
because the satellites are much weaker, on average, 
than the main reflections. This results in a smaller 
denominator in equation (2), and hence a larger wR. 

6. Discussion 

By comparing the three structures in Table 8, one can 
see that the modulation in these structures is very 
similar. The modulation amplitudes are larger at lower 
temperatures, but the same patterns of large and small 
amplitudes exist in all structures, and the phases are 
equal to a very good approximation. This is the case 
despite the fact that the structure at 293 K is 
incommensurate (or a seventeenfold superstructure) 
and both others are threefold superstructures. In all 

Table 8. Amplitudes (A i, x 10 4) and phases ((o i) of the 
modulation functions 

5 has been added to the phases of the modulation functions in the 
room-temperature structure to make them comparable to the phases 
o f  the two other structures. 

293 K 

A t (°i 
Rb(I) 0 

147 (4) 0.155 (4) 
0 

Rb(2) 0 
143 (5) 0.527 (5) 

0 
Zn 0 

98 (4) 0-716 (6) 
0 

Br(1) 0 
354 (5) 0.694 (2) 

0 
Br(2) 0 

2 520 (5) 0.899 (2) 
0 

Br(3) 252 (2) 0-916(1) 
2 193 (3) 0.468 (2) 

150 (3) 0.022 (3) 
Br(4) 

2 
3 

140 K 95 K 

A i qTi A i (°i 
33 (3) 0.87 (I) 15 (4) 0-78 (5) 

223 (3) 0.134 (2) 268 (4) 0.138 (3) 
14 (5) 0.75 (5) 23 (6) 0.98 (4) 
56(4) 0.19(I)  57(6) 0.17(2) 

198 (4) 0.527 (3) 225 (5) 0-520 (3) 
32 (5) 0.84 (2) 26 (6) 0-79 (4) 
12 (4) 0.33 (5) I 1 (6) 0-63 (9) 

138 (3) 0.730 (4) 133 (4) 0.731 (5) 
I 1 (5) 0.76 (7) 41 (7) 0-93 (3) 
53 (3) 0.67(I)  59 (5) 0.67(I)  

535 (4) 0.699 (I) 585 (5) 0-702 (I) 
41 (4) 0.03(1) 26 (5) 0-89 (3) 
13 (3) 0.27 (4) 7 (4) 0.3 (I) 

699 (5) 0.892 (I) 769 (7) 0-890 (I) 
23 (4) 0.77 (3) 33 (6) 0.74 (3) 

341(3) 0.913(I)  383(4) 0-904(2) 
251 (5) 0.460 (3) 265 (7) 0-434 (4) 
247 (4) 0.038 (2) 286 (4) 0.026 (2) 
348 (3) 0.413 (1) 373 (4) 0-410 (2) 
291 (5) 0.453 (3) 295 (6) 0.442 (3) 
184 (4) 0.508 (3) 208 (4) 0.535 (3) 

three structures the largest amplitudes are A 2 of Br(1) 
and Br(2). 

In the room-temperature structure Br(4) is exactly 
the re(s) image of Br(3). In both other structures, this 
symmetry operation does not exist. However, in the 140 
and 95 K structures, Br(4) is in good approximation the 
re(s) image of Br(3), as can be seen from the 
modulation amplitudes and phases in Table 8: d~(t) and 
d3(t) of Br(4) are in antiphase with those of Br(3), and 
d2(t) is in phase with d2(t ) of Br(3). 

Table 10 shows that the ZnBr 4 tetrahedra are rather 
rigid, with all Zn--Br distances about equal. Also, all 
Br(i)-Br(k) distances are about equal for each set of i, 
k. But the Br(1)-Br(2) distances are systematically 
larger than the other ones, and the Br(1)-Br(3) and 
Br(1)-Br(4) distances are systematically larger than 
Br(2)-Br(3), Br(2)-Br(4) and Br(3)-Br(4). These 
systematic differences also exist in the normal phase (de 
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Table 9. Equivalent &otrop& temperature parameters 
(]k 2 X 10 4) 

Ueq = (U 1, + U22 + U,) /3 .  

293 K 140 K 95 K 
Rb(l) 438 (4) 265 (4) 157 (6) 
Rb(2) 745 (6) 427 (6) 317 (7) 
Zn 289 (4) 189 (4) 85 (6) 
Br(I) 665 (7) 345 (6) 196 (7) 
Br(2) 639 (8) 346 (5) 235 (8) 
Br(3) 664(5) 377(8) 217(11) 
Br(4) 374 (8) 217 (I 1) 

Table 10. Interatomic distances in the ZnBr 4 tetrahedra 
( A  X 10 3) 

The estimated standard deviations are 0.004, 0.008 and 0.01 A for 
the distances at 293, 140 and 95 K respectively. 

293 K 140 K 95 K 
Zn-Br(l) 2360--2370 2417 2337 2373 2374 2397 2380 
Zn-Br(2) 2378--2409 2404 2411 2381 2414 2402 2398 
Zn--Br(3) 2361--2414 2382 2416 2418 2394 2405 2402 
Zn-Br(4) 2361--2414 2403 2360 2396 2433 2383 2393 

Br(l)-Br(2) 3982--4019 4043 4026 4010 4043 4062 4013 
Br(l)-Br(3) 3876 - -  3937 3959 3876 3889 3944 3916 3880 
Br(1)--Br(4) 3876 --  3937 3904 3858 3984 3890 3900 3991 
Br(2)-Br(3) 3795 --  3874 3885 3824 3862 3895 3818 3867 
Br(2)--Br(4) 3795--3874 3814 3868 3812 3833 3890 3833 
Br(3)-Br(4) 3838 - -  3900 3914 3857 3855 3926 3885 3847 

Pater, 1979), and in Rb2ZnCI 4 (Quilichini & Pannetier, 
1983), K2ZnC14 (Mikhail & Peters, 1979), K2CoCI 4 
(Vermin et al., 1976), (NH4)EZnCI4 (Matsunaga, 1982), 
CsECdBr 4 and CSEHgBr 4 (Altermatt, Arend, Gramlich, 
Niggli & Petter, 1984). 

Apart from these systematic differences, the varia- 
tions in the distances in ZnBr 4 tetrahedra are much 
smaller than the modulation amplitudes of the Br atoms 
and the Zn atoms have small modulation amplitudes. It 
can therefore be concluded that the modulation consists 
mainly of rotations of the tetrahedra. 

As is discussed by Hogervorst (1986), the 
modulations of the three structures of Rb2ZnBr 4 
discussed here are very similar to modulated structures 
in other A 2BX4 compounds. 

For each structure the equivalent isotropic thermal 
parameters (Table 9) of the Br atoms are about equal. 
The thermal motion of these atoms (Table 7) is strongly 
anisotropic, with the larger axes in directions normal to 
the Zn-Br  bonds, while the thermal motion of Zn is 
much smaller than that of the Br atoms. From this it 
can be concluded that the thermal motion, too, mainly 
involves rotation of the tetrahedra. In each of the three 
Rb2ZnBr 4 structures the thermal motion of Rb(2) is 
much larger than that of Rb(1). This corresponds to the 
fact that the cage of Br atoms around Rb(2) is 
considerably larger than the one around Rb(1), i.e. 
Rb(2) has more space to move in. 

A few questions remain: what is the actual space 
group of the room-temperature phase of RbEZnBr4; and 
what is the essential difference between phase F and 
phase IV? The results of these three structure deter- 
minations do not give a clear answer to these problems. 

The X-ray measurements were performed in 
cooperation with Dr H. van Koningsveld. Dr H. D. 
Flack kindly sent us a copy of his computer program 
for the anisotropic absorption correction. This work is 
part of the research program of the Stichting voor 
Fundamenteel Onderzoek der Materie (Foundation for 
Fundamental Research on Matter), and was supported 
in part by the Stichting Scheikundig Onderzoek in 
Nederland (Netherlands Foundation for Chemical 
Research). It was made possible by financial 
support from the Nederlandse Organisatie voor 
Zuiver-Wetenschappelijk Onderzoek (Netherlands 
Organization for the Advancement of Pure Research). 
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Abstract 

The structure and Si,A1 distributions of various ultra- 
marine pigments have been investigated using X-ray 
and neutron powder diffraction with Rietveld refine- 
ment, and magic-angle-spinning NMR (MAS NMR). 
The basic structures of the ultramarines studied are 
found to be very similar: refinement proceeds far better 
in space group I713m than in PT~3n which indicates that 
Si and A1 in the framework of ultramarines are 
disordered. This conclusion is supported by 29Si MAS 
NMR spectra which contain five signals, rather than a 
single signal which would be present if A I - O - A I  
linkages were forbidden. The intensities of the five peaks 
are consistent with the presence of S i -O-Si ,  S i -O-A1 
and A1-O-AI  linkages in the structure. Such dis- 
ordered Si,A1 distributions in pyrolytically formed 
ultramarines are in striking contrast to the ordered 
distributions found in both the naturally formed 
counterpart lazurite and in hydrothermally synthesized 
zeolites. 

Introduction 

The ultramarines are a family of closely related 
pigments, the best example of which is Reckitt's blue 
with the ideal formula 

NaT.sA16Si6024S4. 5. 

The framework structure is that of sodalite, and the 
pigments may be obtained synthetically by furnacing a 
mixture of the appropriate amounts of kaolin, sulfur, 
sodium carbonate and minor ingredients (Beardsley & 
Whiting, 1948; Prener & Ward, 1950; van Order & 
Hill, 1950). 

Historical records trace the knowledge of ultra- 
marines to ancient times when natives of the Badaskan 
district of Afghanistan used pieces of an intensely blue 
rock as an ornament for making crude pigment. The 

0108-7681/88/020128-08503.00 

rock formed in a calcite and dolomite matrix with small 
flakes of iron pyrites and became known as lapis lazuli 
or lazurite. Ancient legend believed it to be pieces of the 
night sky fallen to earth. By the Middle Ages, the 
material had assumed considerable importance as an 
expensive blue pigment. 

The high cost of extracting and shipping lapis lazuli 
from Afghanistan led in the 1800's to chemical analyses 
(Desormes & Clement, 1806) and various attempts 
(Guimet, 1828; Gmelin, 1828) to make the pigment 
synthetically culminating with commercial production 
(in the UK by James Reckitt and Sons during the mid- 
1880's). From that time the rare natural pigment has 
been referred to as lazurite while the synthetic counter- 
parts have adopted the name ultramarine. 

The basic structure of the ultramarines was first 
studied by Jaeger (1929), and later by Leschewski 
(1935), who concluded that it is based on sodalite 
(Pauling, 1930; Barth, 1932). However, until the 
mid-1980's, there had been no substantial crystal- 
lographic analyses of this structure and no successful 
dynamic study of the intermediates formed during the 
production of ultramarines (Tarling, Barnes & Mackay, 
1984) though a number of spectroscopic techniques 
(see below) had been brought to bear on the problem of 
identifying the colour groups in the various ultramarine 
products. 

We have refined the structure of ultramarine using 
X-ray and neutron diffraction methods, and have 
probed the Si,A1 distribution using magic-angle- 
spinning nuclear magnetic resonance. These analyses 
are also supported by the current literature results from 
other spectroscopic techniques. 

Previous studies on the structure of ultramarines 

Jaeger (1929) identified the three main structural 
components of ultramarine: the aluminosilicate cage; 

© 1988 International Union of Crystallography 


